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bstract

Operation of fuel cells is subject to inherent uncertainty in various material and operating parameters, which causes performance variability and
mpacts the reliability of the cells. Analysis of the interactive effects of parameter uncertainty on the fuel cell performance is imperative in a robust
esign endeavor. To this end, a methodology for simulation of fuel cell operation under uncertainty is presented by considering a one-dimensional
onisothermal description of the governing physical phenomena. A sampling-based stochastic model is developed, and parametric analysis is

resented to elucidate the effects of uncertainty in several operating parameters on the variability of power density of the fuel cell. Robust design
aps are derived from the analysis which provide for selection of cell temperature and anode and cathode pressures as functions of the input

arameter uncertainty and target maximum acceptable variability in the power density.
2006 Elsevier B.V. All rights reserved.
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. Introduction

Power sources consisting of proton exchange membrane
PEM) fuel cells offer the advantages of low operating temper-
ture and pressure, quick start-up, and pollution-free operation
1]. The overall cell performance is governed by the critical
ssues of water and thermal management [2–7]. Extensive stud-
es on modeling and computer simulation of PEM fuel cells
ave been developed towards improved water and thermal man-
gement through better understanding the transport and electro-
hemical processes. Bernardi and Verbrugge [8,9], Springer et
l. [10,11], Baschuk and Li [12], and Rowe and Li [13] developed
ne-dimensional models for steady state operation of fuel cells,
ssuming perfect membrane hydration. Amphlett et al. [14,15]
tudied the transient response of a fuel cell stack by perform-
ng a global heat and mass balance analysis, and the details of

lectrochemical phenomena inside the cell were ignored. Two-
imensional modeling of transport phenomena in PEM fuel cells
as presented by Gurau et al. [16], Um et al. [17], Wang et al.
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under uncertainty

18], You and Liu [19] and You [20], where two-phase flows
n the fuel cell systems were also discussed. Mishra et al. [21]
eported theoretical and experimental study on the effects of dif-
erent gas diffusion layer materials and contact pressure on the
lectrical contact resistance. A methodology for model-based
esign based on a one-dimensional nonisothermal model was
resented by Mishra et al. [22], in which the optimum operating
nd design parameters were identified using a comprehensive
arametric analysis on the various physical and electrochemical
henomena. Mawardi et al. [23] extended this analysis to pro-
ide an optimization framework to derive more general optimum
olutions.

The application of cell level models to predicting the fuel
ell performance is based on the assumption that the parame-
ers representing the physical and electrochemical phenomena,
nd the material properties of the fuel cell are deterministic.
t must be realized that significant uncertainty is inherent in
uch parameters [24,25], arising from sources such as oper-
ting parameter fluctuations, inaccuracies in process control,

mpirical determination of the electrochemical model param-
ters, and environmental uncertainties. Operating parameters
uch as cell temperature, anode and cathode pressures, relative
umidity, reactants stoichiometry, and dry gas mole fractions
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Nomenclature

a active area per unit volume (cm2 cm−3)
ci molar concentration of species i (mol cm−3)
cp,i molar heat capacity at constant pressure for

species i (J mol−1 K)
F Faraday constant 96487 (C mol−1)
hvap mass enthalpy of vaporization (J g−1)
i0 exchange current density (A cm−2)
im catalyst layer membrane phase current density

(A cm−2)
I operating current density (A cm−2)
k thermal conductivity (J cm−1 K)
kp hydraulic permeability (cm2)
Ni molar flux of species i (mol cm−2 s)
p pressure (atm)
Pd power density (W cm−2)
R universal gas constant 8.314 (J mol−1 K)
RH relative humidity
�S entropy change (J g−1 K)
T cell temperature (K)
Wi molar mass of species i (cm s−1)
x position co-ordinate along the cell thickness
xi mole fraction of species i

Greek symbols
αa transfer coefficient for anodic reaction
αc transfer coefficient for cathodic reaction
δ membrane expansion coefficient
εmem

w volume fraction of water in the membrane
ζ stoichiometry
ηd electro-osmotic drag coefficient
θi fractional coverage of species i
κ proton conductivity of the membrane (W cm−1 K)
λ membrane hydration coefficient (moles of

water/moles charge site)
µj mean value of parameter j
µv viscosity (g cm−1 s)
ξ input parameter under uncertainty
σc electrical conductivity of species (� cm−1)
σi standard deviation of parameter j
Φm membrane phase potential (V)
Φs solid phase potential (V)
ωi mass source for species i (g cm−1)

Subscripts
a anode
c cathode
cat catalyst phase
crit critical
el electrode phase
l liquid
max maximum value
ref reference

Superscripts
* optimum value
i boundary i
eff effective
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re subject to control fluctuations and thus may be considered
ncertain. The empirical modeling of the electrochemical phe-
omena may render parameters such as the transfer coefficients
n the Butler–Volmer equations, also to be uncertain. The inter-
ctive effects of the uncertainty in these parameters affect both
he transport and electrochemical phenomena in all regions of
he fuel cell, and must be understood.

A mathematical framework incorporating the interactive
ffects of parameter uncertainty on the performance of the
uel cell is necessary for a realistic, physics-based simula-
ion and robust design. Simulations under uncertainty using
he framework can, in turn, be used to identify the operating
onditions that maximize the cell performance with minimum
ariability. To this end, a stochastic modeling framework is
eveloped and illustrated by considering a one-dimensional,
ingle-phase nonisothermal description of a PEM fuel cell oper-
ting on reformate feed. The stochastic modeling approach
nvolves quantifying the uncertainty in the input parameters in
he form of appropriate distribution functions, and propagat-
ng the uncertainty through a deterministic model to construct
he output variability distributions [26,27]. The output distri-
utions are, in turn, used to obtain reliability or robustness
easures.
In the present implementation, the fuel cell material and oper-

ting parameters with uncertainty are represented as Gaussian
robability distributions which are quantified in terms of the
ean and the variance values. A sampling method is used to

enerate combinations of the input parameters (samples) from
heir respective distributions, and a one-dimensional nonisother-

al model is used to simulate the fuel cell operation for each
ample. The results of the simulations are used to construct
robability distributions of the power density. The output distri-
utions, in turn, provide for extracting the variability information
eeded in a robust design endeavor. Parametric analysis is per-
ormed to elucidate the effects of uncertainty in the operating and
esign parameters on the power density distribution for several
alues of the fuel cell temperature and pressures on the anode
nd cathode. It should be noted that, although the focus of the
aper is on the PEM fuel cell, the stochastic analysis methodol-
gy presented herein is readily applicable to other types of fuel
ell.

The paper is organized as follows: a deterministic PEM
uel cell model which forms the basis of the stochastic mod-
ling is reviewed in Section 2, followed by a description of the

ampling-based stochastic modeling framework in Section 3.
ection 4 discusses the results of the stochastic analysis and the
arametric studies leading to identification of robust operating
aps.
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. Mathematical model of a PEM fuel cell

A comprehensive physical model for the transport and elec-
rochemical phenomena presented by Mishra et al. [22] is used to
imulate the performance of a PEM fuel cell operating on refor-
ate feed. The model considers a typical PEM fuel cell, where
polymer membrane is placed between an anode and a cathode
lectrode to form a membrane-electrode-assembly (MEA). Two
ipolar plates housing the flow channel are used to clamp the
EA, as shown in Fig. 1. Thin catalyst layers exist between

ach of electrodes and the membrane, referred to as the anode
nd cathode catalyst layer, respectively. The cell is considered
o be operating at steady state, and since the primary aim of the
tudy is to present a framework for stochastic analysis of fuel
ells using physics-based models, the discussion is limited to a
ne-dimensional modeling in the direction along the cell thick-
ess. The modeling further neglects two-phase flow effects, but
hese effects may be readily incorporated using approaches such
s in Refs. [28–30]. The modeling includes the effects of car-
on monoxide (CO) poisoning of the catalysts, as is prevalent in
uel cells operating on a reformate feed. The governing equations
or the electrode, catalyst and membrane regions follow those
iven in Ref. [22] and are briefly reviewed in the subsections
elow.

.1. Electrodes
Fuel cell electrodes are typically made of porous carbon paper
r cloth, which serves to transfer the reactant species and to
onduct electrical current. The mathematical model is obtained
y considering the conservation of the species and energy. Fol-

ig. 1. Schematic illustration of a proton exchange membrane (PEM) fuel cell.

v
s
o
t
b
c
l
a

2

p
t
t
d
c
c
t
e

i
4
2
e
c
w
t
i
s

ower Sources 160 (2006) 232–245

owing the development by Rowe and Li [13], the governing
quations may be written as

pecies :
dNi

dx
= ωi

Wi

(1)

nergy : −keff d2T

dx2 +
[∑

i

NiWicp,i + NlW3cp,l

]
dT

dx

+ hvapω3 − I2

σeff
c

= 0 (2)

here the subscript i = 1,. . .,3 denotes the ideal gas species i, Ni

he molar flux in the x-direction in Fig. 1, ωi the mass source
erm, Wi the molecular weight, keff the effective thermal con-
uctivity, T the temperature, cp,i the specific heat at constant
ressure, Nl the molar flux of liquid water, hvap the enthalpy of
aporization for water, I the current density, σeff

c , the effective
lectrical conductivity, and the summation

∑
i is performed with

espect to all the gas species in the mixture.
In this study, the feed streams are considered to be refor-

ate fuel at the anode side and humidified air at the cathode
ide. Hence, the gas species i, i = 1,. . .,3, are defined as 1 = O2,
= N2, 3 = H2O(g) (i.e., water vapor) for the cathode electrode
nd 1 = H2, 2 = CO2, 3 = H2O(g), and 4 = CO for the anode elec-
rode. Since no electrochemical reaction occurs in the electrode
egions, the mass source term ωi is nonzero only for the water
apor species i = 3. To solve the water vapor flux N3, the mass
ource term ω3 (corresponding to the vaporization/condensation
f the water species) is determined in terms of the tempera-
ure and species concentration x3, which, in turn, is determined
y the Stefan–Maxwell equation [13]. Furthermore, the electri-
al potential in the electrode solid, Φs, is calculated by Ohm’s
aw, and the unknowns in the electrode regions are T, N3, x3,
nd Φs.

.2. Catalyst layers

Catalyst layers are considered to be a mixture of membrane,
latinum catalyst (solid), and void space in this study. Elec-
rochemical reactions in the catalyst regions are coupled with
he transport of mass and energy, resulting in a potential gra-
ient across the cell. The CO and H2 molecules in the fuel
ompete with each other for the vacant catalyst sites, and high
oncentration of CO may prevent the electrochemical reaction of
he hydrogen molecules, leading to the so-called CO poisoning
ffect.

In this subsection, the subscript notation for the species
nvolved in the anode catalyst layer is 1 = H2, 2 = H+, 3 = H2O(l),
= CO, 5 = CO2, and that for the cathode catalyst layer is 1 = O2,
= H+, 3 = H2O(l). The governing equations for the various
lectrochemical and transport processes are derived by the appli-
ation of conservation laws for the species and energy, along

ith the Butler–Volmer equation for the electrochemical reac-

ions, the Nernst–Planck equation for the flux of aqueous species
n the membrane, and the Ohm’s law for electron transfer in the
olid.
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The conservation equations of species and energy in the anode
atalyst layer account for the electrochemical reactions of CO
nd H2 as follows:

pecies H2 :
dN1

dx
= −j1(x)

2F
(3)

pecies H+ : F
dN2

dx
= dim

dx
= j1(x) + j4(x) (4)

pecies H2O(l) :
dN3

dx
= −j4(x)

2F
(5)

pecies CO :
dN4

dx
= −j4(x)

2F
(6)

pecies CO2 :
dN5

dx
= j4(x)

2F
(7)

nergy : −keff d2T

dx2 +
⎛
⎝ ∑

i=1,3–5

Nicp,iWi

⎞
⎠ dT

dx

+
∣∣∣∣j1(x) + j4(x)

2F

∣∣∣∣ (T�S)

= (j1(x) + j4(x))(Φs − Φm) + i2m

κeff (8)

here the reaction rates, j1(x) and j4(x) for H2 and CO, respec-
ively, may be given by the Butler–Volmer equation as

1(x) = airef
0 θ1

c1

cref
1

[
exp

(
αaF

RT
(Φs − Φm)

)

− exp

(−αcF

RT
(Φs − Φm)

)]
(9)

4(x) = airef
0 θ4

c4

cref
4

[
exp

(
αaF

RT
(Φs − Φm)

)

− exp

(−αcF

RT
(Φs − Φm)

)]
(10)

The parameter im is the catalyst layer membrane phase cur-
ent density, which is related to the proton molar flux, N2, via the
araday constant, F, as im = FN2. In the energy equation, Eq. (8),
S is the entropy change for the cathode reaction, Φs and Φm

re the electrical potential in the catalyst solid phase and catalyst
embrane phase, respectively, and κeff is the effective electrical

onductivity of the membrane. The reaction rates j1(x) and j4(x),
epend on the catalyst reactive surface area per unit volume, a,
he reference exchange current density, iref

0 , at the reference oxy-
en concentration, cref

1 , the fuel concentrations, c1 and c4, and
he transfer coefficients αa and αc. Depending on the charac-
eristics of the half-cell reactions and the material properties of
he catalyst layers, the transfer coefficients, αa and αc, take on

istinct values, each in a range between 0 and 2. In Rowe and
i [13], both transfer coefficients are taken to be unity, which
ields an approximate Tafel slope of 70 mV decade−1. In this
tudy, the parameters, αa and αc, are considered to be uncertain

H

w
s

ower Sources 160 (2006) 232–245 235

ith the mean value of unity, which reflects both empirical inac-
uracy of the parameters in the Butler–Volmer expressions and
he run-to-run variations in the operation of the fuel cell.

Since both CO and H2 are oxidized to produce H+ [22,31],
he species equation for proton flux, Eq. (4), includes the sum of
1(x) and j4(x). The species consumption/generation in the elec-
rochemical reaction of carbon monoxide is represented by Eqs.
5)–(7). In the energy equation, Eq. (8), the summation includes
our non-ionic species, and the sum j1(x) + j4(x) is also intro-
uced for the overall anode electrochemical reaction involving
2 and CO. Note that the reaction rate j1(x) is proportional to the

overage of hydrogen molecules, θ1, which is defined as the frac-
ion of the catalyst reactive surface area covered by the adsorbed
ydrogen. Similarly, the reaction rate of the CO species, j4(x),
s considered to be proportional to the CO coverage, θ4, and CO
oncentration c4 in Eq. (10). Considering the adsorption, des-
rption, and reaction processes of the H2 and CO species, the
overage θ1 and θ4 may be obtained from a kinetic analysis for
ass balance [31].
The six conservation equations for the anode catalyst layer,

qs. (3)–(8) introduce four additional unknowns, namely, c1, c4,
s, and Φm, which, in turn, are determined by the Nernst–Planck

quation and Ohm’s law [13]. Note that 10 unknowns are
nvolved in the anode catalyst region: N1, im, N3, N4, N5, T,
1, c4, Φm, and Φs. The governing equations for the cathode
atalyst layer follow those given by Rowe and Li [13], and are
ot repeated here for brevity.

.3. Membrane

The membrane of a PEM fuel cell is generally made of a
erfluorosulfonate polymer, which acts as a proton conductor
hen saturated with water. Based on the model assumptions,
nly two species are present in the membrane region, i.e., the
iquid water and the proton. Since no chemical reaction takes
lace in the membrane, the species conservation indicates con-
tant fluxes for both species. The flux of water is determined by
he net effect of electro-osmotic drag, diffusion due to concentra-
ion gradient, and convection due to pressure gradient. The flux
f protons is described by the Nernst–Planck equation, which is
urther rearranged to be in the form of the membrane potential
n this study. The conservation equations of energy and species
n the membrane region read [13]:

nergy : −keff d2T

dx2 + d

dx
(NlhlWl) = i2m

κ
(11)

otential :
dΦm

dx
= − im

κ
+ δ

RT

F

(
3

1 + δλ

)
dλ

dx
+ F

κ

(
1

λ

)
Nl

(12)

( )

2O flux : Nl = −Dl

dcl

dx
− εmem

w cl
kp

µv

dp

dx
+ ηdI

F
(13)

here the subscript ‘l’ denotes the liquid water species, h the
pecific enthalpy, κ the proton conductivity of the membrane, δ
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he membrane expansion coefficient, λ the membrane hydration,
l the diffusion coefficient for liquid water in the membrane,

mem
w , the volume fraction of water in the membrane, kp the
ydraulic permeability of the membrane, µv the viscosity of
iquid water, and ηd is the electro-osmotic drag coefficient. Eqs.
11)–(13) are solved for the three unknowns: T, Φm, and Nl, and
he readers are referred to Rowe and Li [13] for the values of the
arious physical properties involved.

The governing equations formulated in Sections 2.1–2.3 are
olved with the boundary conditions that the temperature, com-
osition of the reactant gas mixtures, pressure, and flow rate in
erms of stoichiometry are specified at the inlets of the anode
nd cathode electrodes (i.e., at the points a and f in Fig. 1).
t must be pointed out that the water vapor flux, N3, could be
alculated by considering the condensation/vaporization pro-
esses in the porous electrode regions. However, due to the
ifficulty in solving two-phase flow in the porous media, the
alues of N3 at the electrode/catalyst interfaces, i.e., points
and e, are set to be 10% of the corresponding flux of the

eactant mixture, as suggested by Rowe and Li [13] for con-
enience. An algorithm developed by Fan and White [32] was
mplemented to predict the polarization curve, temperature dis-
ribution, species concentration and flux under various operating
onditions. The physical properties and kinetic data adopted in
he simulations are available in Refs. [13,31]. The polariza-
ion curve can be constructed by solving the governing sys-
em of equations for the cell potential, Φ, for different values
f the current density, I. The power density of the fuel cell
an, in turn, be obtained from the polarization curve as the

roduct of the cell voltage and the corresponding current den-
ity.

The deterministic model forms the basis of the stochastic
odeling framework discussed in the next section.

o
d

d

Fig. 2. Schematic diagram of a samp
ower Sources 160 (2006) 232–245

. Stochastic analysis of PEM fuel cells

Stochastic analysis refers to numerical simulation based on a
hysical model where some of the parameters are uncertain. The
pproach is that of quantifying the uncertainty in the parame-
ers, propagating the uncertainty through a deterministic model,
nd analyzing the resulting output parameter distributions for
obustness and reliability measures. In the case where the uncer-
ainty in the input parameters can be represented as probability
istributions, a sampling method can be used generate stochas-
ic instances (samples) of the uncertain parameters. Through
eterministic simulations for each sample, output parameter dis-
ributions can be constructed for analysis.

Fig. 2 illustrates the application of the sampling-based
tochastic analysis to a polymer electrolyte membrane fuel cell.
everal parameters in a fuel cell exhibit varying levels of uncer-

ainty including material parameters such as permeability, poros-
ty of gas diffusion layers, transport properties (such as conduc-
ivity, diffusivity), and catalyst loading, among others; model
ncertainty associated with phenomenological descriptions, for
xample, the parameters of the Butler–Volmer equations and
perational parameters. The present analysis focuses on mod-
ling uncertainty, in terms of the transfer coefficients, αa and
c, of the Butler–Volmer equation, as well as uncertainty in the
perating parameters: cell temperature, T; anode and cathode
ressures, pa and pc; anode and cathode relative humidity, RHa
nd RHc; anode and cathode stoichiometry, ζa and ζc; dry gas
ole fractions at the cathode and anode, xN2/O2 and xCO2/H2 ,

espectively, for a total of 11 uncertain parameters. Other types

f uncertainty can also be included following the methodology
escribed here.

The uncertainty in each of the operating parameters is
escribed by a probability distribution function, and quantified

ling-based stochastic analysis.
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tion of CO species on the catalyst surface, which impedes the
electrochemical reaction of the hydrogen fuel. Consequently, a
smaller cell potential is seen for a fixed value of current den-
sity. It should be noted that a sharp drop of cell potential Φ is
A. Mawardi, R. Pitchumani / Journa

y the distribution’s mean value (µ), which denotes the nomi-
al value of the uncertain parameter, and its standard deviation
σ), which is proportional to the uncertainty in the parameter.

degree of uncertainty can be expressed in terms of the coef-
cient of variance (COV), defined as σ/µ; thus, a deterministic
arameter with no uncertainty corresponds to a COV of zero,
hile a distribution with a large uncertainty has a high coeffi-

ient of variance. The choice of the probability density function
or each parameter depends on the nature of its uncertainty, and
ould be one of normal, lognormal, triangular, uniform, Weibull,
r other forms as appropriate. Experimental characterization of
ncertainty is needed to appropriately define the distribution
unction. In the absence of such detailed characterization, a
ormal or Gaussian distribution, which is commonly used to
epresent uncertain parameters of a physical system, is consid-
red to characterize the uncertain fuel cell model and operating
arameters, collectively denoted as ξi, i = 1,. . .,m, in Fig. 2.

The combinations of input parameters are selected from their
espective distributions using an appropriate sampling tech-
ique. The sampling technique and the number of samples are
ritical for the effectiveness of stochastic model to accurately
epresent the output distributions corresponding to uncertainty
n the input parameters. Theoretically, an infinite number, and
ractically, a very large number of samples is required to accu-
ately represent an exact continuous probability distribution. In
urn, the number of deterministic simulations to be performed
n a single stochastic simulation is equal to the required num-
er of samples. Since a single numerical simulation of a PEM
uel cell is computationally expensive, the computational burden
f a stochastic simulation, which calls for multiple determinis-
ic simulations, is considerably larger. From a computational
iewpoint, therefore, it is desirable to minimize the number of
amples in a stochastic simulation.

One approach to alleviating the computational burden is to
ake the sampling more effective, thus reducing the required

umber of samples for the stochastic analysis. Stratified sam-
ling methods such as latin hypercube sampling (LHS) [33]
ffer this advantage over Monte Carlo techniques that are based
n truly random sampling. In a stratified sampling method, if
number of samples is required from a one-dimensional dis-

ribution, the distribution is divided into N intervals (strata) of
qual probability, and one sample is picked randomly from each
nterval to generate the samples. LHS-generated samples better
epresent the entire distribution compared to the Monte Carlo
echnique in which the samples are selected randomly and may
ot cover the entire distribution. Note that other stratified sam-
ling methods such as the Hammersley sequence sampling [34]
ay also be used following the methodology presented in this

aper.
The LHS method is used to generate a set of N samples from

he distributions of the m uncertain parameters, as depicted in
ig. 2. The selection of the number of samples for this study is
ased on a stochastic convergence analysis discussed in the next

ection on presentation of results. As noted earlier, the stochastic
nalysis presented here considers 11 uncertain parameters, i.e.,
= 11. Each sample, j, represents a combination of the uncertain

nput parameter values {ξji: i = 1,. . .,m}, and the deterministic
F
[

ower Sources 160 (2006) 232–245 237

EM fuel cell model is used to simulate the performance for each
uch sample, j = 1,. . .,N. The cell polarization curve expressed
s the power density variation with the current density, Pd(I), as
btained from the simulations is used as the output parameter
or the stochastic analysis.

Based on the multiple simulations corresponding to the N
amples, a distribution of the power density variation is obtained
s illustrated by the shaded band in Fig. 2. At any given current
ensity, a probability distribution function can be constructed
or the power density, which is used to extract the mean (µPd ),
he standard deviation (σPd ), and the coefficient of variance
(σ/µ)Pd

]. The results of the stochastic analysis are presented
n terms of these parameters in the next section.

. Results and discussion

Since the PEM fuel cell model described in Section 2 forms
he basis of the stochastic analysis, the model is validated first
hrough comparison with numerical and experimental data in the
iterature. The results of the validation on the polarization curve
re presented in Fig. 3, in which the solid lines correspond to the
resent simulation results, the discrete diamond markers denote
umerical prediction by Rowe and Li [13], and the circles rep-
esent the experimental data from Springer et al. [10]. The cell
otential decreases monotonically with increasing current den-
ity, as expected, due to increased ohmic loss in the membrane.
he present model predictions show good agreement with the
umerical prediction by Rowe and Li [13] over the entire range
f current density in the plot.

The model is also validated with the experimental data from
pringer et al. [10] where carbon monoxide (CO) poisoning at
00 ppm in the feed hydrogen stream at the anode was con-
idered. The cell potential decreases sharply in the presence
f CO poisoning in the anode feed stream, due to the adsorp-
ig. 3. Validation of the numerical PEM fuel cell model with the data from Refs.
13,10].
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Fig. 4. Stochastic convergence analysis to determine the minimum number of
samples: (a) convergence of mean power density with the number of samples
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Table 1
Values of the operating parameters used in the studies

Operating parameters Figs. 4–6 Figs. 7–12

Current density, I (A cm−2) 0.7 Variable
Cell temperature, T (◦C) 100 100
Anode pressure, pa (atm) 6.5 10
Cathode pressure, pc (atm) 6.5 15
Anode stoichiometry, ζa 4.0 1.1
Cathode stoichiometry, ζc 4.0 7.0
Anode relative humidity, RHa 0.6 1.1
Cathode relative humidity, RHc 0.6 0.1
A
C

n
c
o
b
n
t
s
o
f
s
t
c
s
s
i

s
0
t
b
a distinct skew in the distribution, which reflects the nonlin-
earity of the relationship between the power density and the
uncertain parameters. Furthermore, it is important to note that
as a result of the nonlinearities, the extreme values of the power
nd (b) convergence of standard deviation of the power density with the number
f samples.

bserved between I = 0.2 and 0.4 A cm−2 for the case with CO
oisoning. As current density increases, the loss due to the limi-
ation of mass transport rate becomes dominant, and with further
ncrease in the current density, the partial pressure of oxygen at
he catalyst layer/cathode interface rapidly decreases, preventing
xygen from reaching the reaction site and thus rapidly reduc-
ng the voltage. The present model predictions are seen to be in
lose agreement with the experimental data for all current den-
ity values. The comparisons in Fig. 3, therefore, demonstrate
he accuracy of the deterministic process model, which serves
s the basis of the sampling-based stochastic analysis results
iscussed in the remainder of this section.

The fidelity of the stochastic analysis is directly linked to
he accuracy of the shape and moments of the power density
istribution obtained from the simulations. While, theoretically,
n infinite number of samples is needed for an accurate calcu-
ation of the moments, faster computation calls for minimizing
he number of samples. The minimum number of samples for
he stochastic simulations was determined using a stochastic

onvergence analysis of the power density distribution. Fig. 4
resents the variations of the mean (Fig. 4(a)) and the standard
eviation (Fig. 4(b)) of the power density as a function of the

F
s

node dry gas mole fraction, xCO2/H2 0.0 0.0
athode dry gas mole fraction, xN2/O2 3.76 0.0

umber of samples used in the stochastic simulation. The results
orrespond to a specific current density of 0.7 A cm−2, and the
ther operating parameters listed in Table 1. It is observed that
oth the mean and the standard deviation values converge as the
umber of samples increases, and, further, that at 100 samples,
he mean value converges to within 0.1% (Fig. 4(a)) and the
tandard deviation value converges to within 3.0% (Fig. 4(b))
f their respective values at larger number of samples. It was
ound that the convergence characteristic – i.e., the number of
amples beyond which the standard deviation (mean) converges
o within 3.0% (0.1%) – remained practically invariant to the
hange in the initial random seed used in the generation of the
amples using LHS. Based on the stochastic convergence analy-
is, a sample size of 100 was selected for the simulations reported
n this section.

Fig. 5 shows a distribution of the power density from a
tochastic simulation corresponding to a current density of
.7 A cm−2. Recall that the uncertain parameters in the stochas-
ic simulations are represented as symmetric Gaussian distri-
utions; however, the histogram of the power density reveals
ig. 5. Power density distribution obtained from stochastic analysis using 100
amples.
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ig. 6. Coefficient of variance of power density as a function of input uncertainty
ressures, (c) anode and cathode stoichiometry, (d) relative humidity in the ano

ensity do not necessarily correspond to the extreme values of
he uncertain input parameter distributions; thus, a sampling-
ased stochastic analysis is better suited for robust design than
ther techniques such as interval analysis that consider only the
xtreme values of the uncertain parameter ranges. The bold-
ashed-line in Fig. 5 represents the mean value of the dis-
ribution (µPd = 0.345 W cm−2) and the dotted lines at 0.308
nd 0.382 W cm−2 indicate µPd − σPd and µPd + σPd values,
espectively. It is seen that about 75% of the distribution falls
ithin this one-standard deviation band around the mean. The
gure suggests that the mean, µPd , the standard deviation, σPd ,
nd the coefficient of variance, (σ/µ)Pd

, are appropriate mea-
ures of the power density distribution and will be used in the
nalysis presented here.

Fig. 6 shows the coefficient of variance (COV) of the power
ensity as a function of input uncertainty, expressed as the COV
f the input parameters, (σ/µ)ξ , for various values of the operat-
ng parameters under uncertainty. It should be noted that as each
perating parameter shown in Fig. 6 is varied, the other param-

ters assume the values listed in Table 1. The results share a
ommon trend that as the COV of the input parameters increases,
he COV of power density also increases. Fig. 6(a) presents the
ffects of the cell temperature, T, in which it is seen that higher

o
p

t

arious values operating parameters: (a) cell temperature, (b) anode and cathode
cathode, (e) N2/O2 mole fraction, and (f) CO2/H2 mole fraction.

ell temperature results in lower COV of the power density for
ll values of input COV, (σ/µ)ξ . It was reported in Ref. [22]
hat power density increases with increasing cell temperature.
hus the results indicate that as the cell temperature increases,

he increase in the standard deviation of power density is less
han the increase in the mean power density, causing the COV of
ower density, (σ/µ)Pd

, to decrease as T increases. The effects
f varying electrode pressures, pa and pc, on the COV of power
ensity are presented in Fig. 6(b), which shows that lower elec-
rode pressures cause smaller power density variance. However,
t should be noted that small values of electrode pressures also
esult in small power density [22], which may not be a desirable
erformance. Fig. 6(c)–(f) show that the effects of the varia-
ion in the anode and cathode stoichiometry, ζa and ζc, relative
umidity of the anode and cathode, RHa and RHc, and dry gas
ole fractions, xN2/O2 and xCO2/H2 , on the power density vari-

nce are less significant than the effects of T, pa and pc, for all
alues of (σ/µ)ξ . For the remainder of the parametric study of the
tochastic analysis, therefore, the paper focuses on the effects of

perating cell temperature, T, anode pressure, pa, and cathode
ressure, pc, on the variation of power density.

Fig. 7(a)–(i) present the mean power density, µPd , as a func-
ion of the current density for a range of input parameter uncer-
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ig. 7. Mean and standard deviation values of power density as a function of
ther operating parameters are given in Table 1.

ainty, (σ/µ)ξ and cell temperature, T. The variability in the
ower density as a function of the current density is illustrated
y the dashed lines, which represent the values of µPd − σPd

nd µPd + σPd . For a given current density, the standard devia-
ion of the power density, σPd , is the magnitude of the difference
etween either of the two dashed lines and the solid line in the
lots. The results show that as the current density increases, the
ariability of power density also increases as seen in the widen-
ng of the gap between the dashed lines in the plot. The increase
s more pronounced for cases with higher input uncertainty, as
bserved in Fig. 7(c), (f), and (i) (the right column of plots). As
σ/µ)ξ increases (from left to right in Fig. 7), the peak mean
ower density slightly decreases, while the standard deviation
f the power density, σPd , clearly increases, which signifies that
ncrease in the input parameter uncertainty leads to a significant
erformance variability of the fuel cell. As the cell temperature
ncreases (from top to bottom in Fig. 7), both the mean and the
tandard deviation of the power density increase. However, the
ncrease in the mean value dominates the increase in the standard

eviation, resulting in a decrease in the coefficient of variance,
σ/µ)Pd

, with temperature, T, as noted in Fig. 6(a). These results
uggest that the fuel cell should be operated at high temperature
rom the viewpoint of increasing the mean power density, µPd ;

r
r
m
d

t density at various values of cell temperature and level of input uncertainty.

owever, minimizing variance, σPd , calls for a low temperature
peration. Identification of robust operating regimes is based on
alancing these two competing considerations.

It is instructive to examine the variation of the mean values of
he power density with respect to their corresponding standard
eviations so that the maximum achievable mean power den-
ity can be identified for an allowable maximum variance in the
ower density. To this end, Fig. 8(a)–(c) present the data from
ig. 7 in this format, for σPd in the range of 0–0.10 W cm−2,
nd for the three input uncertainty levels and the three temper-
tures considered in Fig. 7. For a given value of σPd , the mean
ower density, µPd , increases with cell temperature, owing to
he reduced activation and concentration losses, and decreases
s (σ/µ)ξ , increases (Fig. 8(a)–(c)). It is seen in Fig. 8(a)–(c) that
or each combination of temperature and input uncertainty, the
ean power density is maximized, µ∗

Pd
, for an optimum value

f the standard deviation, σ∗
Pd

, as identified for an example case
n Fig. 8(a). This suggests that in order to operate the fuel cell at
ts maximum power density, a certain degree of variability rep-

esented by σ∗

Pd
is inevitable, and that the variability can not be

educed (or increased) further without also compromising on the
ean power density. It is interesting to note that the mean power

ensity is reduced for both a tighter and a relaxed specification on
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ig. 8. Mean value of power density as a function of the standard deviation for
arious values of cell temperature and level of input uncertainty. Other operating
arameters are given in Table 1.

he allowable variance relative to σ∗
Pd

. Fig. 8 further shows that
he optimum variance increases with temperature at all levels of
nput uncertainty. For a given temperature, σ∗

Pd
, increases with

σ/µ)ξ , which indicates that as the input uncertainty increases,
he fuel cell can not be operated at the maximum power density
ithout corresponding increase in the variability.
Following the format in Fig. 8, Fig. 9 illustrates the effects of

node pressure, pa on the mean and standard deviation of power
ensity, at a cell temperature of T = 100 ◦C and cathode pressure

f pc = 15 atm. It is also observed that for each anode pressure,
here exists an optimum standard deviation of power density,
∗
Pd

, which corresponds to a peak value of mean power den-
ity, µ∗

Pd
. As input COV, (σ/µ)ξ , increases (Fig. 9(a)–(c)), σ∗

Pd
,

w
t
s
i

ig. 9. Mean value of power density as a function of the standard deviation for
arious values of anode pressure and level of input uncertainty. Other operating
arameters are given in Table 1.

ncreases, and the corresponding peak mean power density, µ∗
Pd

,
ecreases, for all values of anode pressure considered. Both peak
ean power density, µ∗

Pd
, and the optimum standard deviation,

∗
Pd

, exhibit a non-monotonic trend with respect to the anode
ressure, with pa = 6 atm being an optimum within the range
f anode pressures considered. At the low anode pressures, an
ncrease in pa enhances the power density due to reduced concen-
ration loss. However, further increase in pa causes membrane
ehydration and lower performance due to a decrease in the

ater diffusivity in the anode region [23]. It should also be noted

hat the effects of anode pressure on the variation of power den-
ity are not as significant as those of the cell temperature seen
n Fig. 8.
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ig. 10. Mean value of power density as a function of the standard deviation for
arious values of cathode pressure and level of input uncertainty. Other operating
arameters are given in Table 1.

The effects of cathode pressure on the mean power density
ariation with the standard deviation are shown in Fig. 10, for
nput COV of 0.02 (Fig. 10(a)), 0.05 (Fig. 10(b)), and 0.10
Fig. 10(c)), with the cell temperature fixed at T = 100 ◦C and
node pressure at pc = 10 atm. It is observed that as the cathode
ressure, pc, increases, the mean power density, µPd , increases
onotonically, for any value of the standard deviation, due to the

educed concentration loss at the high cathode pressure. Further,
s previously observed in Figs. 8 and 9, the optimum standard

eviation of power density, σ∗

Pd
, also increases as the (σ/µ)ξ

ncreases. For the values of cell temperature, cathode pressure,
nd input COV considered, both the peak mean power density,
∗
Pd

, and the optimum standard deviation, σ∗
Pd

, increase mono-

w
B
t
t

ower Sources 160 (2006) 232–245

onically with pc. The results in Fig. 10 also indicate that the
ffects of the cathode pressure, pc, are more significant than
hose of the anode pressure.

From the foregoing results, it is evident that conditions that
ead to maximizing the mean power density also cause the
ariability to increase. Thus, it is of interest to determine the opti-
um cell temperature, and anode and cathode pressures, which
aximize the mean power density subject to constraint on lim-

ting the standard deviation of power density to within a desired
alue, for given input uncertainty. The results in Figs. 8–10 can
e used to construct design charts that provide for determining
he maximum achievable mean power density as a function of
nput COV and desired maximum standard deviation of power
ensity. The design charts and the illustration of the design
ethodology are the focus of the remainder of the discussion.
Fig. 11 presents contour maps of the maximum realizable

ean power density, µPd,max, as a function of the standard devi-
tion, σPd , and input coefficient of variance, (σ/µ)ξ , for the three
alues of the cell temperature. For all the three cell temperatures,
he contours exhibit similar trends with different magnitude of
ower density values. The maximum realizable mean power
ensity varies from 0.56 W cm−2 for T = 60 ◦C (Fig. 11(a)) to
.93 W cm−2 (Fig. 11(c)). The maximum power density val-
es are seen to concentrate along a band extending from the
ower left corner to the top mid section of each plot frame. The
esign plots reveal interesting trends: for stringent requirements
n the maximum variability, for example σPd = 0.02 W cm−2,
he maximum achievable mean power density decreases mono-
onically as (σ/µ)ξ increases. However, if a greater variability
ere tolerable, for example, (σ/µ)ξ = 0.05 W cm−2, µPd,max,

ncreases for 0 ≤ (σ/µ)ξ < 0.05 and decreases for (σ/µ)ξ > 0.05.
The contours of maximum mean power density correspond-

ng to different anode and cathode pressures are presented in
ig. 12(a)–(c) and (d)–(f), respectively, for a fixed cell tem-
erature of 100 ◦C. The shapes of the contours in Fig. 12 are
imilar in shape to those in Fig. 11, in that the larger values of
he mean power density are clustered around regions in each
lot. The magnitude of the maximum achievable mean power
ensity, µPd,max, increases as the anode pressure increases from
a = 2 atm (Fig. 12(a)) to pa = 6 atm (Fig. 12(b)), and slightly
ecreases with further increase of pa to 10 atm (Fig. 12(c)).
n the other hand, the results for different values of cathode
ressure in Fig. 12(d)–(f) show that the maximum mean power
ensity increases monotonically with cathode pressure, reach-
ng a value of 0.93 W cm−2 for pc = 15 atm (Fig. 12(f)). Once
gain, the maximum achievable mean power density is seen to
ecrease monotonically with (σ/µ)ξ at small values of allow-
ble, σPd , whereas at larger allowable values, a non-monotonic
rend is evident in the variation of µPd,max with (σ/µ)ξ .

The use of the contour maps in Figs. 11 and 12 for a robust
esign of the fuel cell operating parameters is illustrated by con-
idering three design cases—Case A in which the variance in
ower density, σPd , is to be limited to 0.02 W cm−2 for a cell

ith an operational parameter uncertainty, (σ/µ)ξ = 0.10; Case
in which the variance in power density, σPd , is to be limited

o 0.02 W cm−2 for a cell with an operational parameter uncer-
ainty, (σ/µ)ξ = 0.05 and Case C in which the variance in power
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n a two-dimensional field of the standard deviation of power density and input
ncertainty, for various values of cell temperature. Other operating parameters
re given in Table 1.

ensity, σPd , is to be limited to 0.05 W cm−2 for a cell with an
perational parameter uncertainty, (σ/µ)ξ = 0.05.

Corresponding to Case A specifications, it is seen from Fig. 11
that the maximum realizable mean power density, µPd,max,
is highest at 0.40 W cm−2 for an operating temperature of
100 ◦C, and anode and cathode pressures of 10 and 15 atm,
respectively (Fig. 11(c)). Similarly, Fig. 12(a)–(c) reveal that
the design specifications for Case A correspond to a maxi-

−2
mum achievable mean power density of 0.40 W cm for all
anode pressures in the range 2–10 atm, a cell temperature of
100 ◦C and a cathode pressure of 15 atm, and Fig. 12(d)–(f)
indicate that the maximum realizable mean power density

o
t
o
s

ower Sources 160 (2006) 232–245 243

is 0.40 W cm−2 for pc = 15 atm, T = 100 ◦C and pa = 10 atm.
Based on these, the robust operating conditions for Case A
are deduced as T = 100 ◦C, pa = 2 atm, and pc = 15 atm. Note
that the solution is invariant to the anode pressure, and the low-
est value of 2 atm is chosen based on minimizing the pumping
requirements. The robust solution yields a mean power den-
sity of 0.40 W cm−2 with a variability of 0.02 W cm−2, which
represents a coefficient of variance of 5% on the power den-
sity.
Case B denotes a reduction in the parameter uncertainty to
5% while the variability on the power density is sought to
be kept within 0.02 W cm−2 as in Case A. Corresponding to
these specifications, the following parameter combinations
and maximum realizable power densities are obtained
from Figs. 11 and 12: T = 100 ◦C, pa = 10 atm, pc = 15 atm,
µPd,max = 0.65 W cm−2 (Fig. 11(c)); T = 100 ◦C, pa = 6 atm,
pc = 15 atm, µPd,max = 0.68 W cm−2 (Fig. 12(b)) and
T = 100 ◦C, pa = 10 atm, pc = 15 atm, µPd,max = 0.65 W cm−2

(Fig. 12(c)). The operating parameters that lead to the max-
imum mean power density of 0.68 W cm−2, noted above
from Fig. 12(b), therefore, constitute the robust parameter
design for Case B. For this design, and the variability of
0.02 W cm−2, the coefficient of variance on the power density
is 2.9%.
Case C explores the impact of accommodating a greater vari-
ability in the power density, while the parameter uncertainty
is maintained at 5% as in Case B. The reader may verify that
the robust operating conditions that lead to maximum mean
power density correspond to the parameter combination in
Fig. 12(b), as in Case B: T = 100◦C, pa = 6 atm, pc = 15 atm, for
which the maximum realizable power density is 0.90 W cm−2,
and its coefficient of variance is 5.6%.

A comparison of the three design cases indicates that reducing
he parameter uncertainty from 10% (Case A) to 5% (Case B)
eads to a 70% increase in the maximum realizable power density
rom 0.40 to 0.68 W cm−2. Further, by allowing for a greater
ariability of 0.05 W cm−2 in the power density (Case C) while
eeping the parameter uncertainty at 5%, the mean power density
s increased to 0.90 W cm−2—an increase of 32% relative to the
.68 W cm−2 in Case B. Of the three cases, the design for Case B
epresents the least coefficient of variance of the power density.
he contour maps in Figs. 11 and 12 thus provide for ready
xploration of tradeoffs in arriving at robust designs based on
pplication requirements.

The results presented here were based on parametric studies
ver a selected range of three principal operating parameters
n order to illustrate the methodology of fuel cell design under
ncertainty using stochastic simulations. The stochastic analysis
ethodology may be extended to design considerations involv-

ng parameters other than the power density, and moreover,
ther considerations, such as those involved in the applica-
ion of high cell pressures, may be incorporated as additional

bjectives and constraints in the design endeavor. The stochas-
ic analysis methodology was demonstrated in this study using a
ne-dimensional single-phase model of a PEM fuel cell, which
erved to illustrate the principal trends and results that are appli-
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ig. 12. Contour maps representing the maximum mean value of power densi
ncertainty, for: (a)–(c) various values of anode pressure and (d)–(f) various va

able to practical fuel cells. The methodology can be readily
xtended to more sophisticated multi-dimensional and multi-
hase models of fuel cells and their stacks with an associated
ncrease in the computational effort. These enhancements may
e considered in a future study. In a future work, the stochastic
odeling framework may also be interfaced with a numerical

ptimization scheme to provide a robust design tool for stochas-
ic optimization under uncertainty.

. Conclusions

The paper presented detailed discussion on the framework
f a sampling-based stochastic analysis for proton exchange
embrane fuel cells, where some of the operating and design

arameters (input parameters) are uncertain. The results were
resented in terms of mean and standard deviation of power
ensity, which represent a performance measure and its vari-
bility. The methodology and the results provide for a valuable
ool for fuel cell design under uncertainty. Example cases illus-

rating the use of the results for robust design under uncertainty
ere presented. The stochastic analysis framework presented in

he paper may be used for cases where other input parameters
re considered to be uncertain. The stochastic model can also be
a two-dimensional field of the standard deviation of power density and input
f cathode pressure. Other operating parameters are given in Table 1.

sed as a basis for numerical optimization under uncertainty for
uel cells.
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